4 maja, 2024

MSPStandard

Znajdź wszystkie najnowsze artykuły i oglądaj programy telewizyjne, reportaże i podcasty związane z Polską

Nowe odkrycie zmienia nasze rozumienie kryształów

Nowe odkrycie zmienia nasze rozumienie kryształów

Nowe badanie wykazało, że struktury krystaliczne, kluczowe dla materiałoznawstwa i technologii, takich jak półprzewodniki i panele słoneczne, nie zawsze muszą być ułożone jednolicie. Odkryli, że losowe układanie warstw heksagonalnych (RHCP), wcześniej uważane za stan przejściowy, prawdopodobnie będzie stabilne i może zapewnić nowe użyteczne właściwości materiałom wielogatunkowym, takim jak węglik krzemu stosowany w elektronice wysokiego napięcia i kamizelkach kuloodpornych.

Odkrycie nieregularnie ułożonych struktur obaliło wcześniejsze wierzenia.

Dla wielu słowo „kryształy” przywołuje obrazy świecącego światła słonecznego, tworzące pryzmaty w kolorach tęczy lub półprzezroczyste kamienie, o których uważa się, że mają moc uzdrawiania. Ale w nauce i inżynierii kryształy przyjmują bardziej techniczną definicję. Są one postrzegane jako substancje, których składniki – niezależnie od tego, czy są to atomy, cząsteczki czy nanocząsteczki – są regularnie rozmieszczone w przestrzeni. Innymi słowy, kryształy można rozpoznać po regularnym ułożeniu ich składników. Znane przykłady to diamenty, sól kuchenna i kostki cukru.

Sangwoo Lee

Sangwoo Lee. Źródło: Rensselaer Polytechnic Institute

W przeciwieństwie do tej powszechnie akceptowanej definicji, ostatnie badania prowadzone przez Sangwoo Lee, adiunkta na Wydziale Inżynierii Chemicznej i Biologicznej w Rensselaer Polytechnic Institute, ujawniają interesujący aspekt struktur krystalicznych, ujawniając, że rozmieszczenie składników w kryształach nie jest. Zawsze koniecznie regularnie.

To odkrycie stanowi postęp w dziedzinie materiałoznawstwa i ma niezrealizowane implikacje dla stosowanych w nim materiałów[{” attribute=””>semiconductors, solar panels, and electric vehicle technologies.

One of the most common and important classes of crystal structures is the close-packed structures of regular spheres constructed by stacking layers of spheres in a honeycomb arrangement. There are many ways to stack the layers to construct close-packed structures, and how nature selects specific stacking is an important question in materials and physics research. In the close-packing construction, there is a very unusual structure with irregularly spaced constituents known as the random stacking of two-dimensional hexagonal layers (RHCP). This structure was first observed from cobalt metal in 1942, but it has been regarded as a transitional and energetically unpreferred state.

Lee’s research group collected X-ray scattering data from soft model nanoparticles made of polymers and realized that the scattering data contains important results about RHCP but is very complicated. Then, Patrick Underhill, professor in Rensselaer’s Department of Chemical and Biological Engineering, enabled the analysis of the scattering data using the supercomputer system, Artificial Intelligence Multiprocessing Optimized System (AiMOS), at the Center for Computational Innovations.

“What we found is that the RHCP structure is, very likely, a stable structure, and this is the reason that RHCP has been widely observed in many materials and naturally occurring crystal systems,” said Lee. “This finding challenges the classical definition of crystals.”

The study provides insights into the phenomenon known as polytypism, which enables the formation of RHCP and other close-packed structures. A representative material with polytypism is silicon carbide, widely used for high-voltage electronics in electric vehicles and as hard materials for body armor. Lee’s team’s findings indicate that those polytypic materials may have continuous structural transitions, including the non-classical random arrangements with new useful properties.

“The problem of how soft particles pack seems straightforward, but even the most basic questions are challenging to answer,” said Kevin Dorfman of the University of Minnesota-Twin Cities, who is unaffiliated with this research. “This paper provides compelling evidence for a continuous transition between face-centered cubic (FCC) and hexagonal close-packed (HCP) lattices, which implies a stable random hexagonal close-packed phase between them and, thus, makes an important breakthrough in materials science.”

“I am particularly pleased with this discovery, which shows the power of advanced computation to make an important breakthrough in materials science by decoding the molecular level structures in soft materials,” said Shekhar Garde, dean of Rensselaer’s School of Engineering. “Lee and Underhill’s work at Rensselaer also promises to open up opportunities for many technological applications for these new materials.”

Reference: “Continuous transition of colloidal crystals through stable random orders” by Juhong Ahn, Liwen Chen, Patrick T. Underhill, Guillaume Freychet, Mikhail Zhernenkovc and Sangwoo Lee, 14 April 2023, Soft Matter.
DOI: 10.1039/D3SM00199G

Lee and Underhill were joined in research by Rensselaer’s Juhong Ahn, Liwen Chen of the University of Shanghai for Science and Technology, and Guillaume Freychet and Mikhail Zhernenkov of Brookhaven National Laboratory.

READ  Kosmiczny Teleskop Jamesa Webba obserwuje wczesny Wszechświat, obserwując galaktyki takie jak nasza Droga Mleczna