Korzystanie z matrycy dużych milimetrów/metrów Atacama ([{” attribute=””>ALMA) in Chile, researchers at Leiden Observatory in the Netherlands have for the first time detected dimethyl ether in a planet-forming disc. With nine atoms, this is the largest molecule identified in such a disc to date. It is also a precursor of larger organic molecules that can lead to the emergence of life.
“From these results, we can learn more about the origin of life on our planet and therefore get a better idea of the potential for life in other planetary systems. It is very exciting to see how these findings fit into the bigger picture,” says Nashanty Brunken, a Master’s student at Leiden Observatory, part of Leiden University, and lead author of the study published on March 8, 2022, in Astronomy & Astrophysics.
Jak kończą się składniki życia na planetach? Odkrycie największej molekuły, jaką kiedykolwiek znaleziono na dysku formującym planety, dostarcza wskazówek na ten temat. kredyt:[{” attribute=””>ESO
Dimethyl ether is an organic molecule commonly seen in star-forming clouds, but had never before been found in a planet-forming disc. The researchers also made a tentative detection of methyl formate, a complex molecule similar to dimethyl ether that is also a building block for even larger organic molecules.
“It is really exciting to finally detect these larger molecules in discs. For a while we thought it might not be possible to observe them,” says co-author Alice Booth, also a researcher at Leiden Observatory.
The molecules were found in the planet-forming disc around the young star IRS 48 (also known as Oph-IRS 48) with the help of ALMA, an observatory co-owned by the European Southern Observatory (ESO). IRS 48, located 444 light-years away in the constellation Ophiuchus, has been the subject of numerous studies because its disc contains an asymmetric, cashew-nut-shaped “dust trap.” This region, which likely formed as a result of a newly born planet or small companion star located between the star and the dust trap, retains large numbers of millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids and potentially even planets.
Many complex organic molecules, such as dimethyl ether, are thought to arise in star-forming clouds, even before the stars themselves are born. In these cold environments, atoms and simple molecules like carbon monoxide stick to dust grains, forming an ice layer and undergoing chemical reactions, which result in more complex molecules. Researchers recently discovered that the dust trap in the IRS 48 disc is also an ice reservoir, harboring dust grains covered with this ice rich in complex molecules. It was in this region of the disc that ALMA has now spotted signs of the dimethyl ether molecule: as heating from IRS 48 sublimates the ice into gas, the trapped molecules inherited from the cold clouds are freed and become detectable.
Ten film jest powiększony za pomocą systemu Oph-IRS 48, gwiazdy otoczonej dyskiem złożonym z planety zawierającej pułapkę pyłową. Ta pułapka umożliwia wzrost cząsteczek kurzu i rozmnażanie większych ciał.
„To, co sprawia, że jest to jeszcze bardziej ekscytujące, to fakt, że teraz wiemy, że te większe złożone molekuły są dostępne do zasilania planet formujących się w dysku” – wyjaśnia Booth. „Nie było to wcześniej wiadome, ponieważ te cząsteczki są ukryte w lodzie w większości systemów”.
Odkrycie eteru dimetylowego sugeruje, że w lodowych strukturach dysków tworzących planety może czaić się wiele innych złożonych cząsteczek powszechnie występujących w regionach gwiazdotwórczych. Te cząsteczki są prekursorami cząsteczek prebiotycznych, takich jak[{” attribute=””>amino acids and sugars, which are some of the basic building blocks of life.
By studying their formation and evolution, researchers can therefore gain a better understanding of how prebiotic molecules end up on planets, including our own. “We are incredibly pleased that we can now start to follow the entire journey of these complex molecules from the clouds that form stars, to planet-forming discs, and to comets. Hopefully, with more observations we can get a step closer to understanding the origin of prebiotic molecules in our own Solar System,” says Nienke van der Marel, a Leiden Observatory researcher who also participated in the study.
Ten film jest powiększony za pomocą systemu Oph-IRS 48, gwiazdy otoczonej dyskiem złożonym z planety zawierającej pułapkę pyłową. Ta pułapka umożliwia wzrost cząsteczek kurzu i rozmnażanie większych ciał.
Przyszłe badania IRS 48 za pomocą Ekstremalnie Wielkiego Teleskopu (ELT), obecnie budowanego w Chile i zaplanowanego na początek tej dekady, pozwolą zespołowi zbadać chemię wewnętrznych obszarów dysku, w których mogą powstawać planety takie jak Ziemia. .
Odniesienie: „Główna asymetryczna pułapka lodowa w dysku tworzącym planety: III. Pierwsze wykrycie eteru dimetylowego” autorstwa Nasante JC Bronkin, Alice S. Booth, Margot Lemker, Bony Nazari, Ninke van der Marel i Ewen F. Van Dyschoek , 8 marca 2022 r., Astronomia i astrofizyka.
DOI: 10.1051/0004-6361/202142981
Publikacja ta została wydana w Międzynarodowy Dzień Kobiet 2022 i zawiera badania przeprowadzone przez sześć badaczek.
Zespół składa się z Nashanty GC Brunken (Leiden Observatory, Leiden University, Holandia) [Leiden]), Alicja S. Booth (Leiden), Margot Lemker (Leiden), Boneh Nazari (Leiden), Ninke van der Marel (Leiden), Ewen F van Dyschoek (Obserwatorium w Leiden, Instytut Edukacji Pozaziemskiej im. Maxa Plancka, Physek, Garching, Niemcy)
More Stories
Boeing może nie być w stanie obsługiwać pojazdu Starliner przed zniszczeniem stacji kosmicznej
Jak czarne dziury stały się tak duże i szybkie? Odpowiedź kryje się w ciemności
Studentka Uniwersytetu Północnej Karoliny zostanie najmłodszą kobietą, która przekroczy granice kosmosu na pokładzie Blue Origin